Scite This: ACS Appl. Mater. Interfaces 2018, 10, 13479–13490

First-Principles Study of Lithium Cobalt Spinel Oxides: Correlating Structure and Electrochemistry

Soo Kim,^{†,§} Vinay I. Hegde,[†] Zhenpeng Yao,[†][®] Zhi Lu,[†] Maximilian Amsler,^{†,||}[®] Jiangang He,[†][®] Shiqiang Hao,[†] Jason R. Croy,[‡][®] Eungje Lee,^{*,‡} Michael M. Thackeray,[‡] and Chris Wolverton^{*,†}[®]

[†]Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States

[‡]Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States

Supporting Information

ACS APPLIED MATERIALS

& INTERFACES

ABSTRACT: Embedding a lithiated cobalt oxide spinel $(\text{Li}_2\text{Co}_2\text{O}_4, \text{ or } \text{LiCoO}_2)$ component or a nickel-substituted $\text{LiCo}_{1-x}\text{Ni}_x\text{O}_2$ analogue in structurally integrated cathodes such as $x\text{Li}_2\text{MnO}_3 \cdot (1-x)\text{LiM'O}_2$ (M' = Ni/Co/Mn) has been recently proposed as an approach to advance the performance of lithium-ion batteries. Here, we first revisit the phase stability and electrochemical performance of LiCoO₂ synthesized at different temperatures using density functional theory calculations. Consistent with previous studies, we find that the occurrence of low- and high-temperature structures (i.e., cubic lithiated spinel LT-LiCoO₂ ($R\overline{3}m$), respectively) can be

explained by a small difference in the free energy between these two compounds. Additionally, the observed voltage profile of a Li/LiCoO₂ cell for both cubic and trigonal phases of LiCoO₂, as well as the migration barrier for lithium diffusion from an octahedral (O_h) site to a tetrahedral site (T_d) in $Fd\overline{3}m$ LT-Li_{1-x}CoO₂, has been calculated to help understand the complex electrochemical charge/discharge processes. A search of LiCo_xM_{1-x}O₂ lithiated spinel (M = Ni or Mn) structures and compositions is conducted to extend the exploration of the chemical space of Li–Co–Mn–Ni–O electrode materials. We predict a new lithiated spinel material, LiNi_{0.8125}Co_{0.1875}O₂ ($Fd\overline{3}m$), with a composition close to that of commercial, layered LiNi_{0.8}Co_{0.15}Al_{0.05}O₂, which may have the potential for exploitation in structurally integrated, layered spinel cathodes for next-generation lithium-ion batteries.

KEYWORDS: lithium-ion battery, lithium cobalt oxide, overlithiated spinel, overpotential, migration barrier, structural search, materials discovery

I. INTRODUCTION

In 1991, Sony introduced the first commercial lithium-ion battery (LIB), with carbon serving as the anode and a layered lithium cobalt oxide (LiCoO₂) as the cathode. Today, LiCoO₂ is still the predominant cathode material used in LIB products that power portable electronic devices. LiCoO₂ (LCO) has been synthesized both as a layered $R\overline{3}m$ structure (HT-LCO) at high temperatures (~900 °C) and as a cubic $Fd\overline{3}m$ structure (LT-LCO) at lower temperature (~400 °C).¹⁻¹³ Nearly 2 decades ago, Wolverton and Zunger demonstrated, using the first-principles full-potential linearized augmented planewave (FP-LAPW) method within the local density approximation (LDA), that the T = 0 K ground state structure of LiCoO₂ is the layered $R\overline{3}m$ structure (i.e., HT-LCO),² but the calculated energy difference between the lavered and cubic structures of LiCoO₂ is very small ($\sim 0.01 \text{ eV/formula unit (fu)}$).^{2,3} There have been substantial efforts to further investigate the thermodynamic phase stability of the LixCoO2 system (for HT-LCO) using density functional theory (DFT) calculations within LDA⁴⁻⁶ to explain the experimentally observed phase transformations during redox reactions of Li_xCoO₂ ($0 \le x \le 1$) electrodes. Early theoretical studies predicted that the composition Li_{0.5}CoO₂ energetically prefers the spinel structure over a layered structure,^{3,7} and there is a thermodynamic driving force for the transformation of the layered compounds to a spinel (near x = 0.5) during electrochemical reactions. This prediction^{3,7} was subsequently verified by transmission electron microscopy studies of HT-LCO electrodes that were subjected to extensive cycling.^{8,9} Furthermore, Choi et al.¹⁰ have shown that a LiCo₂O₄ spinel structure can be also synthesized by chemically extracting lithium from LT-LiCoO₂ (i.e., $Fd\overline{3m}$ LT-LCO; or Li₂Co₂O₄) at room temperature and have tested the

Received:January 8, 2018Accepted:April 4, 2018Published:April 4, 2018

electrochemical profile of both LT- and HT-LCO cathode materials.

These early pioneering studies^{1–13} opened up an opportunity to better understand the LiCoO₂ phase stability, particularly by focusing on the electrochemical performance of LiCoO₂ cathodes over long-term cycling. However, there have been long-standing discrepancies between the DFT calculated and experimental properties of $R\overline{3}m$ Li_xCoO₂ system cathodes, e.g., structural lattice parameters upon delithiation and average voltage. These discrepancies have been significantly clarified in a recent computational study,¹⁴ where the inclusion of van der Waals (vdW) interactions in DFT calculations helped account for the weak dispersion forces that bind the layers, especially for the delithiated phase of $R\overline{3}m$ Li_xCoO₂ cathode materials.

In a recent experimental study, Long et al. suggested that embedding a small amount of a cobalt-containing spinel component in structurally integrated "layered–layered-spinel" (LLS) electrode materials might significantly enhance their electrochemical properties.¹⁵ This study prompted a reinvestigation of lithiated spinel LT-LiCoO₂ (or, Li₂Co₂O₄) and LT-LiCo_{1-x}Ni_xO₂ (0 < $x \le 0.2$) systems by Lee et al.,¹⁶ with the argument that a lithiated cobalt oxide spinel component in a LLS electrode would be more beneficial than a manganese oxide spinel in terms of both delivered voltage and cycling stability—i.e., ~3.6 V vs Li/Li⁺ for Li_{1-x}CoO₂ (0 ≤ $x \le 0.5$) compared with ~2.9 V for Li₂Mn₂O₄ and the lower mobility of cobalt ions relative to manganese ions in a close-packed oxygen array, respectively.¹⁶

Here, we revisit the phase stability of a cubic $(Fd\overline{3}m)$ lithiated spinel LiCoO₂ structure (i.e., LT-LCO; or Li₂Co₂O₄) and a trigonal $(R\overline{3}m)$ layered LiCoO₂ (i.e., HT-LCO) using firstprinciples calculations within the generalized gradient approximation (GGA) with the Hubbard U correction (GGA + U) scheme, as well as by employing vdW-inclusive functionals when necessary. Our findings can be summarized as follows: (i) a very small free energy difference between the cubic $Fd\overline{3}m$ spinel (LT-LCO) phase and the trigonal $R\overline{3}m$ layered (HT-LCO) phase explains the coexistence of both phases in ref 16 at low/moderate temperatures, (ii) a favorable lithium ion migration from an octahedral to a tetrahedral site occurs in LT-LCO during electrochemical charging, confirmed by both DFT and ex situ X-ray diffraction (XRD) analysis, and (iii) a structural search within Li-Co-Mn-Ni-O chemical space predicts a possible LiCo_{0.1875}Ni_{0.8125}O₂, overlithiated spinel oxide. Our DFT study provides an opportunity to understand and improve the existing LIB technology by exploiting cobaltand nickel-based spinel oxide materials in structurally integrated, layered spinel electrodes.

II. METHODS

All the DFT calculations were carried out within the Vienna ab initio simulation package using projected augmented wave pseudopotentials and the Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional of the generalized gradient approximation (GGA).^{17–19} We used Dudarev's rotationally invariant DFT + *U* approach to treat the 3d electrons of Co, Mn, and Ni ions.²⁰ The *U* values of 3.3, 3.8, and 6.4 eV were used for Co, Mn, and Ni, respectively. The Heyd–Scuseria–Ernzerhof (HSE) screened hybrid density functional HSE06 calculations^{21,22} were also performed for a comparison with GGA + *U* voltages (see Section II.II and Table 2). We used a cutoff energy of 520 eV for the planewave basis set in all the calculations. We used *k*-point meshes up to 8000 *k*-points per reciprocal atom (KPPRA) to obtain accurate total DFT energies (~4000 KPPRA for HSE calculations). Unless noted, all the atomic positions were relaxed

with symmetry-broken DFT calculations to fully capture the local variations of Li–O, Co–O, and Ni–O polyhedral clusters. VESTA²³ was used to visualize the crystal structures.

II.I. Structure Prediction and Free Energy. Structure prediction calculations were performed using the minima hopping method $(MHM)^{24,25}$ to explore the ground state and other low-energy polymorphs of LiCoO₂. The MHM implements a reliable algorithm to explore the potential energy surface by efficiently sampling the low-lying local minima using consecutive, short molecular dynamics (MD) escape steps followed by local geometry optimizations.^{26–29} The Bell–Evans–Polanyi principle is exploited by aligning the initial MD velocities along the soft-mode directions to accelerate the search.^{30,31} The vibrational entropy and Helmholtz free energy of the *Fd*3*m* and *R*3*m* structures were calculated with the PHONOPY code³² within the harmonic approximation.

II.II. Delithiation. A previous DFT study by Aykol et al.¹⁴ suggested that initializing DFT calculation with different magnetic moments (0–5 $\mu_{\rm B}$ for Co) can result in energies up to ~130 meV/ atom higher than the ground state due to the existence of both lowand high-spin states of Co. It was also determined that assigning lowspin Co^{3+} ($t_{2g}^{6}\text{e}_{g}^{0}$) with no magnetic moment (0 μ_{B}) and low-spin Co^{4+} ($t_{2g}^{5}\text{e}_{g}^{0}$) with a magnetic moment of 1 μ_{B} results in the lowestenergy solution for Li_{0.5}CoO₂ with an U_{Co} value of 3.3 eV.¹⁴ Consistent with a previous study,¹⁴ we observe that assigning moments of 0 and 1 $\mu_{\rm B}$ to Co³⁺ and Co⁴⁺, respectively, usually resulted in the low-energy solutions (by up to ~30 meV/atom) after being allowed to relax to self-consistency during DFT calculation. We also find that the "final" resulting magnetic moments always end up being close to the assigned "initial" magnetic moments, e.g., ~0 and ~1 $\mu_{\rm B}$ for Co³⁺ and Co⁴⁺, respectively, for a number of Li_xCoO₂ systems tested in the current work. For calculation of energetics during the delithiation process, we treat the Co closest to a lithium vacancy to be 4+, and we confirmed that this indeed results in energetically more favorable solutions, up to ~5 meV/atom lower in energy than any other possible arrangement. We considered $Fd\overline{3}m$ LT-LCO supercells consisting of 16 fu for all our delithiation calculations. The unique Li sites within the supercells were identified using symmetry-determining algorithms implemented in the Materials INTerface suite (MINT) package, freely available for download at https://github.com/ materials/mint.³³ We removed the most weakly bound Li atom at each composition, starting from ${\rm Li}_{16}{\rm Co}_{16}{\rm O}_{32}$ to ${\rm Li}_8{\rm Co}_{16}{\rm O}_{32}$ (i.e., carrying out a dilute limit voltage calculation). We calculated the energy difference between overlithiated Li16Co16O32 spinel (all the lithium ions in the octahedral sites) and Li₈Co₁₆O₃₂ spinel (all the lithium ions in the tetrahedral sites) to obtain the average voltage of the two-phase reaction: $2\text{LiCoO}_2 \rightarrow \text{LiCo}_2\text{O}_4 + \text{Li}^+ + \text{e}^-$. We monitored the changes in the cathode structure (i.e., lattice parameters) and its oxidation states (i.e., Bader charge analysis) in all the DFT calculations.

II.III. Li⁺ **Migration in** *Fd*3*m* LT-LCO. The climbing image nudged elastic band (ci-NEB) method^{34,35} was used to find the minimum energy barrier between the octahedral (O_h) and tetrahedral (T_d) Li⁺ sites in *Fd*3*m* Li_{1-x}CoO₂ structures in the compositions of Li₁₀Co₁₆O₃₂ and Li₈Co₁₆O₃₂. These two compositions, close to LiCo₂O₄ spinel (i.e., all the Li atoms occupying T_d sites), were chosen to investigate the energetic landscape of lithium migrations from O_h to T_d in the *Fd*3*m* Li_{1-x}CoO₂ systems.

II.IV. Ex Situ X-ray Diffraction. The preparation of LT-LiCo_{0.9}Ni_{0.1}O₂ cathode materials is described elsewhere.¹⁶ Ex situ X-ray diffraction (XRD) analysis of the cycled electrodes collected at different states of charge/discharge was carried out at beamline 11-BM of the Advanced Photon Source in the Argonne National Laboratory to investigate the Li⁺ ion migration tendencies (O_h \leftrightarrow T_d) in the LT-phase.

II.V. Structural Search. We used the structure generating algorithms implemented in the Enum package^{36–38} to construct possible mixing configurations of transition metal (TM) atoms in the cubic $Fd\overline{3}m$ and layered $R\overline{3}m$ $\text{Li}_{16}\text{Co}_{16-x}M_x\text{O}_{32}$ structures (up to 64 total atoms in the supercell; M = Ni or Mn; $0 \le x \le 16$)—a total of 531 structures for $Fd\overline{3}m$ and 2250 structures for $R\overline{3}m$. We calculated

Figure 1. Crystal structures of (a) $Fd\overline{3}m$ spinel LiCoO₂ (LT-LCO; or Li₂Co₂O₄) and (b) $R\overline{3}m$ layered LiCoO₂ (HT-LCO). (c) The relative energy scale of LiCoO₂ polymorphs (calculated within GGA + *U*), where all the LiCoO₂ crystal structures are generated using the minima hopping method (MHM).^{24,25} Crystal structure prediction using MHM runs confirms that both $Fd\overline{3}m$ and $R\overline{3}m$ LiCoO₂ phases are indeed the two lowest energy LiCoO₂ polymorphs with a significant energy gap to the next higher energy polymorph.

the electrostatic energies of all such structures using MINT,³³ and further calculated the three structures with the lowest electrostatic energy at each composition within the previously described DFT formalism using GGA + *U*. Furthermore, all the ground state phases available in the chemical space of Li–Co–Mn–Ni–O (i.e., reference chemical potentials) in the Open Quantum Materials Database (OQMD)^{39,40} were recalculated with consistent DFT settings. In addition, we included "normal" Li(Co_{1-x}M_x)₂O₄ spinel oxides (M = Mn and Co; $0 \le x \le 1$), LiNi_{0.5}Mn_{1.5}O₄, LiNiMnO₄, LiNi_{0.33}Co_{0.333}Mn_{0.333}O₂, LiCo_{0.67}Mn_{0.33}O₂, LiCo_{0.17}Ni_{0.83}O₂, LiMn_{0.5}Ni_{0.5}O₂, LiMn_{0.33}Ni_{0.66}O₂, LiMn_{0.14}Ni_{0.86}O₂, Li(Ni_{0.31}Co_{0.19}Mn_{0.5})₂O₄, and Li(Co_{0.31}Ni_{0.19}Mn_{0.5})₂O₄ phases for the thermodynamic stability assessment in the Li–Co–Mn–Ni–O system.

III. RESULTS AND DISCUSSION

III.1. Structure. *III.1.1. LT- and HT-LCO.* Figure 1a,b show the relaxed structures of $Fd\overline{3}m$ LiCoO₂ cubic spinel (LT-LCO; or Li₂Co₂O₄) and $R\overline{3}m$ layered LiCoO₂ (HT-LCO) from GGA + U calculations. The lattice parameters determined from GGA + U scheme are provided in Table 1. In a previous study by Lee et

Table 1. Structural Properties of LT-LCO and HT-LCO Obtained from GGA + U Calculations^{*a*}

structure	space group	a (Å)	c (Å)	c/a	$E_{0,\mathrm{GGA}+U}$ (eV/fu)
LT-LCO	Fd3m	$\begin{array}{l} 8.0644\\ (a=b=c) \end{array}$	n/a	n/a	-22.740
HT-LCO	R 3 m	2.8398	14.1473	4.98	-22.748

^{*a*}The space group after the relaxation is identified with MINT.³³ We observe a very small difference in the calculated energies between $Fd\overline{3}m$ spinel LiCoO₂ (i.e., LT-LCO; or Li₂Co₂O₄) and $R\overline{3}m$ layered LiCoO₂ (HT-LCO).

al., ¹⁶ a sample of LiCoO₂ powder prepared at 400 °C for 6 days (denoted as "LT-phase") was analyzed using high-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy. Their results suggested that the LT-phase powder contains both $Fd\overline{3}m$ and $R\overline{3}m$ LiCoO₂ structures. We believe that the synthesis of $Fd\overline{3}m$ LiCoO₂ structures. We believe that the synthesis of $Fd\overline{3}m$ LT-LCO (or LT-phase consisting both $Fd\overline{3}m$ and $R\overline{3}m$) at low temperatures¹⁶ is due to sluggish kinetics, whereas at high heat-treatment temperatures, fast kinetics enable the system to reach thermodynamic equilibrium to form the layered structure (HT-LCO).³ In other words, the very small difference in the energies of the competing polymorphs (Table 1), at least in part, can explain the coexistence of both $Fd\overline{3}m$ and $R\overline{3}m$ phases in the LT-phase powders prepared in ref 16.

Wolverton and Zunger previously reported that the calculated energy difference between $Fd\overline{3}m$ spinel LiCoO₂ (LT-LCO; or Li₂Co₂O₄) and $R\overline{3}m$ layered LiCoO₂ (HT-LCO) is very small (i.e., ~2 meV/atom; or ~8 meV/fu) within the DFT calculations based on LDA and FP-LAPW.^{2,3} In this current work, our GGA + *U* results agree with these previous calculations with a high degree of quantitative precision, even though the DFT method is different (i.e., FP-LAPW vs planewave) and the exchange–correlation functional is different (i.e., LDA vs PBE). Here, we consistently find that the energy difference between the layered and cubic LiCoO₂ is very small at ~2 meV/atom (without vdW corrections), where the layered LiCoO₂ is lower in energy.

We performed additional DFT calculations incorporating opt-type (optPBE) van der Waals density functionals (vdW-DF)^{14,41–43} to both $Fd\overline{3}m$ and $R\overline{3}m$ LiCoO₂ structures; also, we find that the energy difference between the two phases is not significantly affected by including the vdW-DF. Previous studies¹⁴ have shown that vdW corrections are essential for accurately predicting the structural properties (e.g., lattice parameters, interlayer spacing, and crystal volume) of $R\overline{3}m$ Li_xCoO_2 at x < 0.5; however, at x = 1, for the fully lithiated $R\overline{3}m$ LiCoO₂, these structural properties were only slightly improved by accounting for dispersion interactions. Overall, our theoretical study confirms that the layered compound is always lower in energy regardless of the inclusion of vdW correction. This finding is also consistent with the earlier experimental result suggesting that the lithiated spinel synthesized at low temperatures slowly transforms to a more thermodynamically stable layered LiCoO₂.⁴⁴

Lastly, to ensure that $Fd\overline{3}m$ and $R\overline{3}m$ LiCoO₂ phases are energetically the most stable structures at the composition, we used the MHM^{24,25} to survey the potential energy landscape of LiCoO₂ (up to 16 atoms per supercell). Here, we used both $Fd\overline{3}m$ and $R\overline{3}m$ LiCoO₂ phases as the seed structures for the MHM runs. As shown in Figure 1c, $Fd\overline{3}m$ and $R\overline{3}m$ LiCoO₂ phases are indeed the two lowest-energy polymorphs among the 122 unique configurations sampled, where the MHM did not find any other structure lower in energy. The structure next lowest in energy belongs to a hexagonal space group $(P\overline{3}m1)$ with an ABAB stacking sequence; however, it is ~35 meV/ atom higher in energy than the $Fd\overline{3}m$ and $R\overline{3}m$ polymorphs.

III.I.II. Free Energy of LiCoO₂. So far, we have only described the 0 K energetics of the relevant phases. Because the $R\overline{3}m$ and $Fd\overline{3}m$ structures are energetically nearly degenerate, the entropy may significantly affect the stability of the $Fd\overline{3}m$ and $R\overline{3}m$ LiCoO₂ structures at finite temperatures.⁴⁵ Because both $Fd\overline{3}m$ and $R\overline{3}m$ LiCoO₂ structures are ordered, the free energy (*F*) then can be calculated by including the vibrational entropy: $F = E_0 - TS_{vib}$, where E_0 , S_{vib} , and *T* are the internal DFT energy of LiCoO₂ determined within GGA + *U*, the vibrational entropy (GGA + *U* calculated), and temperature, respectively. Figure 2 shows the difference in the free energy between $Fd\overline{3}m$

Figure 2. Calculated free energy difference between $R\overline{3}m$ and $Fd\overline{3}m$ LiCoO₂, suggesting that the $R\overline{3}m$ structure becomes increasingly more stable than $Fd\overline{3}m$ LiCoO₂ (or Li₂Co₂O₄) at higher temperatures.

LT-LCO and $R\overline{3}m$ HT-LCO, which is extremely competitive between 0 and 1500 K. However, Figure 2 also shows that HT-LCO is the ground state structure of LiCoO₂ system at all the temperatures. We tested the above behavior of free energy with temperature using opt-type vdW corrections;^{14,41-43} however, they did not affect the main conclusion that $R\overline{3}m$ HT-LCO is always more stable than $Fd\overline{3}m$ LT-LCO at all the temperatures. Because the difference in free energies of the two phases is very small at all the temperatures, it suggests that the $Fd\overline{3}m$ LiCoO₂ (or Li₂Co₂O₄) phase can be formed at low and medium temperatures. At higher temperatures, we expect the system to find the equilibrium state (where kinetics are also faster) to observe the $R\overline{3}m$ HT-LCO phase. In conclusion, our theoretical calculations are consistent with the previous experimental observations (and previous calculations).^{1-3,8-13,44} We further discuss the stability of the $Fd\overline{3}m$ phase with Ni substitution¹⁶ in the Supporting Information (SI, Section S1).

III.II. Electrochemical Properties of LT-LCO and HT-LCO. III.II.I. Layered vs Cubic DFT Voltages. Figure 3a shows a conventional $Fd\overline{3}m$ LiCoO₂ supercell consisting of 16 fu; and Figure 3b shows Li_{0.5}CoO₂ (or LiCo₂O₄ spinel) all Li⁺ ions occupying the tetrahedral 8a sites. The layered $R\overline{3}m$ LiCoO₂ structure is shown in Figure 1b. The calculated GGA + $U(U_{Co})$ = 3.3 eV) voltages of $R\overline{3}m$ HT-LCO and $Fd\overline{3}m$ LT-LCO charged to Li_{0.5}CoO₂ are found to be 3.58 and 3.31 V (vs Li/ Li⁺), respectively. In addition, Table 2 provides a summary of the DFT (and HSE) calculated voltages of $R\overline{3}m$ and $Fd\overline{3}m$ $LiCoO_2$ charged to $Li_{0.5}CoO_2$ and CoO_2 and the comparison with experiments.^{3,14,11,16,46} We observe that the most accurate voltage of $R\overline{3}m$ LiCoO₂ cathodes can be predicted when using the opt-type vdW corrections.^{14,41–43} In the case of $Fd\overline{3}m$ LiCo O_2 cathode, both LDA³ and GGA + U (U_{Co} = 5 eV) scheme can closely predict the experimental voltages.^{11,16,46} The HSE06 results slightly overestimate the experimental voltages in all the cases. The experimental charge/discharge voltage vs capacity curves of synthesized LiCoO₂ powders at 400 °C in ref 16 are provided in Figure 4, reported to contain both $Fd\overline{3}m$ and $R\overline{3}m$ phases within a single-powder sample.

As seen from Table 2, our GGA (with or without +U and/or vdW correction) and HSE06 calculation results indicate that Li⁺ ion extraction from the octahedral (O_h) sites of $Fd\overline{3}m$ LT-LCO (Figure 3a) resulting in $Fd\overline{3}m$ LiCo₂O₄ spinel shown in Figure 3b (i.e., structure with all the Li⁺ ion migrated from O_h to T_d; $Fd\overline{3}m$ LiCoO₂ \rightarrow $Fd\overline{3}m$ Li_{0.5}CoO₂) occurs at a lower voltage than Li⁺ ion extractions from the layered $R\overline{3}m$ HT-LCO (shown in Figure 1b), in good agreement with the electrochemistry data shown in Figure 4. We note that the extraction of Li⁺ ion from a tetrahedral (T_d) site of LiCo₂O₄ (Figure 3b) toward Li_{1-x}Co₂O₄ occurs at a voltage ~0.9 V higher than that for Li⁺ extraction from O_h sites.¹⁶ We further discuss the mechanisms of Li⁺ ion extraction by constructing a LT-/HT-LCO interface model in the SI (Section S2).

III.II.II. Delithiation of $Fd\overline{3}m$ LT-LCO and Li⁺ Migration Kinetics. In Figure 4, we observe a voltage hysteresis at 3.7 V (charging) and 3.5 V (discharging) for the $Fd\overline{3}m$ LT-LCO component but not for the $R\overline{3}m$ HT-LCO component (i.e., both charging and discharging plateaus can be found at 3.9 V).

Figure 3. Crystal structures of (a) overlithiated $Fd\overline{3}m$ LT-LiCoO₂ (or Li₂Co₂O₄) and (b) spinel $Fd\overline{3}m$ Li_{0.5}CoO₂ (LiCo₂O₄ normal spinel). Lithium ions occupy 16c octahedral sites and 8a tetrahedral sites in Li₂Co₂O₄ (panel a) and LiCo₂O₄ (panel b), respectively.

voltage (V vs Li/Li ⁺)	$Fd\overline{3}m$ (Li ₁ to Li _{0.5})	$Fd\overline{3}m$ (Li ₁ to Li ₀)	$R\overline{3}m$ (Li ₁ to Li _{0.5})	$R\overline{3}m$ (Li ₁ to Li ₀)
LDA ³	3.50	3.91	3.37	3.78
GGA ^{a,14}	2.61	3.41	3.0	3.3
$GGA + U (U_{Co} = 3.3 \text{ eV})^a$	3.31	3.89	3.58	3.80
$GGA + U (U_{Co} = 5 \text{ eV})^{a,14}$	3.41	4.02	3.6	3.8
optPBE + $U (U_{\text{Co}} = 4 \text{ eV})^{a,14}$	3.16	3.71	3.9	4.1
HSE06 ^{<i>a</i>,14}	3.95	4.66	4.2	4.5
charge (exp.) ^{11,16,46}	3.7	≥4.3	3.9	4.1
discharge (exp.) ^{11,16,46}	3.3	~3.6	3.9	3.8

Table 2. Summary of the Calculated vs Experimental Voltages of LT-LCO $(Fd\overline{3}m)$ and HT-LCO $(R\overline{3}m)$ from LiCoO₂ \rightarrow Li_{0.5}CoO₂ (Li₁ to Li_{0.5}) and LiCoO₂ \rightarrow CoO₂ (Li₁ to Li₀)

^{*a*}This work.

Figure 4. Experimental voltage vs capacity curves for $LiCoO_2$ synthesized at 400 °C composed of both $Fd\overline{3}m$ and $R\overline{3}m$ phases. First, we observe the charging and discharging plateaus of $Fd\overline{3}m$ phase at 3.7 and 3.5 V, respectively (indicated by the purple arrows). The redox reaction of $R\overline{3}m$ phase occurs at 3.9 V (indicated by the green arrows). Adapted with permission from ref 16. Copyright 2017 American Chemical Society.

As mentioned in Section III.II.I, the calculated DFT voltage between LT-LCO (Li₂Co₂O₄) and LiCo₂O₄ (also see Figure 5a,d), where lithium ions occupy all the octahedral (O_h) sites and tetrahedral (T_d) sites in Li₂Co₂O₄ and LiCo₂O₄, respectively, is 3.31 V. From here on, we will refer to this DFT voltage of 3.31 V as the "equilibrium DFT voltage" of the following charging reaction: $2\text{Li}_{(16c)}\text{CoO}_2 \rightarrow \text{Li}_{(8a)}\text{Co}_2\text{O}_4 + \text{Li}^+ + e^-$.

We carefully studied the preference of Li⁺ ion occupations between O_h vs T_d sites during delithiation of the $Fd\overline{3}m$ LT-LiCoO₂ (or, Li₂Co₂O₄) cathode. While the M–O framework remains the same in the $Fd\overline{3}m$ LT-LiCoO₂ (or, Li₂Co₂O₄) and LiCo₂O₄ spinel structures, the occupancy of Li⁺ ions changes from O_h to T_d sites during the charging process. Therefore, starting from the supercell shown in Figure 5a (i.e., Li₁₆Co₁₆O₃₂), the lowest energy lithium vacancies were successively created (i.e., by removing one Li at a time, and by testing all the Li positions for each cell to find the lowestenergy Li to be removed), until the composition of Li₈Co₁₆O₃₂ was reached (Figure 5c). From our calculations of the charging cycle, we find that lithium ion migration from an O_h site to an adjacent T_d site becomes energetically favorable (with no barrier) only at a composition of Li₁₁Co₁₆O₃₂ (i.e., with all the

Figure 5. Crystal structures of (a) $Fd\overline{3}m$ LT-LCO $\{Li_{16}\}_{(16c)}Co_{16}O_{32}$, where Li⁺ ions occupy all the 16c octahedral (O_h) sites, (b) $\{Li_1\}_{(8a)}\{Li_{10}\}_{(16c)}Co_{16}O_{32}$, where one Li⁺ occupies an 8a tetrahedral (T_d) site, and all other Li⁺ ions occupy the 16c octahedral sites, (c) $\{Li_4\}_{(8a)}\{Li_4\}_{(16c)}Co_{16}O_{32}$, where 50% of Li⁺ ions occupy the T_d and the other 50% occupy the O_h, and (d) $Fd\overline{3}m$ normal $\{Li_8\}_{(8a)}Co_{16}O_{32}$ spinel, where Li⁺ ions occupy all the 8a tetrahedral (T_d) sites. All of the other intermediate compositions between panel (a) and (c) (i.e., $Li_{15}Co_{16}O_{32}$, $Li_{14}Co_{16}O_{32}$, $Li_{13}Co_{16}O_{32}$, $Li_{12}Co_{16}O_{32}$, $Li_{10}Co_{16}O_{32}$, $Li_{10}Co_{10}Co_{16}O_{32}$, $Li_{10}Co_$

Figure 6. Barrier for Li⁺ ion migration, calculated using the nudged elastic band (NEB) method energy barrier calculations of Li⁺ ion migration in (a) $Li_{10}Co_{16}O_{32}$ and (b) $Li_8Co_{16}O_{32}$ (or $LiCo_2O_4$). Only Li–O polyhedral clusters are shown for clarity. For panel (b), we observe that all the Li atoms relax spontaneously into T_d sites, even if we only move one O_h Li into the adjacent T_d site.

Figure 7. (a) Calculated X-ray diffraction (XRD) patterns of LT-LiCoO₂ (i.e., Li₂Co₂O₄) and LiCo₂O₄ spinel compounds. (b) Experimental voltage vs capacity curves for LT-LiCo_{0.9}Ni_{0.1}O₂ synthesized at 400 °C,¹⁶ where the cathode sample is mainly composed of $Fd\bar{3}m$ LT-phase (please note that the layered phase still exists in the sample: see ref 16). The ex situ XRD patterns of LT-LiCo_{0.9}Ni_{0.1}O₂ during charging (panel c) and discharging (panel d) are shown. The XRD peak intensity ratios of $I_{(113)}/I_{(004)}$ during the charge/discharge runs (i.e., panels (c) and (d), respectively) are provided in Table 3.

other 10 lithium ions still occupying the O_h sites, as shown in Figure 5b). We repeated the above procedure (i.e., create the energetically most favorable lithium vacancy in the lowest-energy Li_{16-x}Co₁₆O₃₂ structure) and find a Li₈Co₁₆O₃₂ structure that contains 50% of lithium ions at T_d sites and the other 50% of lithium ions at O_h sites (Figure 5c). In other

words, in each delithiation step from Li₁₁Co₁₆O₃₂ onward, one more of the remaining lithium atoms in the O_h sites migrates to an adjacent T_d site until the composition of Li₈Co₁₆O₃₂ is reached (shown in Figure 5c, with four Li⁺ in T_d and four Li⁺ in O_h). The difference between the energy of the ground state Li_(8a)Co₂O₄ spinel structure with all lithium atoms occupying

8a T_d sites (Figure 5d; ${Li_8}_{(8a)}Co_{16}O_{32}$) and the ${Li_{0.5}}_{(8a)}{Li_{0.5}}_{(16c)}Co_2O_4$ structure (Figure 5c; $\{Li_4\}_{(8a)}\{Li_4\}_{(16c)}Co_{16}O_{32})$ is ~33 meV/atom. The calculated DFT voltage between $Li_{(16c)}CoO_2$ in Figure 5a (i.e., ${Li_{16}}_{(16c)}Co_{16}O_{32}$) and ${Li_{0.5}}_{(8a)}{Li_{0.5}}_{(16c)}Co_2O_4$ in Figure 5c (i.e., ${Li_4}_{(8a)}{Li_4}_{(16c)}Co_{16}O$) is 3.54 V (that is, ~0.2 V higher than the equilibrium DFT voltage; please refer to refs 47-49 for the rationale behind using the metastable phase on the (de-)lithiation reactions). We note that phases other than the lowest-energy ones that we report in this work could be further computed to identify a number of metastable phases at each composition, but it is likely that such higher-energy metastable phases would only increase the voltage hysteresis beyond 0.2 V. Thus, we believe that the formation of the metastable $\{Li_{0.5}\}_{(8a)}\{Li_{0.5}\}_{(16c)}Co_2O_4$ phase shown in Figure 5c could directly contribute to an increased overpotential of ~0.2 V during the charging cycle of $Fd\overline{3}m$ LT-LCO component (see Figure 4); however, it is also possible that other complexities present within the composite cathodes such as intergrown layered/spinel domains and/or residual TM ions in the lithium layer¹⁶ also play important roles in impeding lithium ion kinetics in the system. The existence of metastable phases during charging cycles has been previously observed in a number of systems in both experimental and theoretical studies. $^{50-53}$ During the discharge cycles, on the other hand, a sufficient number of lower-energy vacant Ohh sites are available, where lithium ions can be inserted. The discharge process may then follow the "equilibrium" reaction pathway (i.e., $Li_{(8a)}Co_2O_4 + Li^+ + e^- \rightarrow 2Li_{(16c)}CoO_2$).

For selected $Fd\overline{3}m$ Li_{1-x}CoO₂ structures, we investigated the energy barrier for Li⁺ ion migration using the ci-NEB method, where we displaced one Li atom from an Oh site to an adjacent T_d site. Figure 6 shows the calculated NEB energy barriers for Li⁺ migration at compositions of Li₁₀Co₁₆O₃₂ and Li₈Co₁₆O₃₂. The barrier for Li⁺ migration is found to be small in both structures (~0.15 eV). However, the relative energy difference before and after Li⁺ ion migration (or the "thermodynamic driving force") in Li₈Co₁₆O₃₂ is calculated to be much larger than that in $Li_{10}Co_{16}O_{32}$ (-0.175 vs -0.003 eV/Li⁺). In fact, once one of the Li⁺ in the O_h site migrates to an adjacent T_d site in the metastable Li₈Co₁₆O₃₂ structure (found in Figure 5c), all the remaining Li^+ ions in O_h sites migrate to the adjacent T_d sites, as shown in Figure 6b. In the subsequent section, we will monitor the Li^+ ion migration (O_h vs T_d) as a function of state-of-charge via ex situ X-ray diffraction analysis to further understand the Li⁺ migration kinetics in $Fd\overline{3}m$ $Li_{1-x}CoO_2$.

III.II.III. Ex Situ X-ray Diffraction Analysis on $Fd\overline{3}m$ LT- $LiCo_{0.9}Ni_{0.1}O_2$. In this section, we monitor the evolution of the X-ray diffraction (XRD) pattern of a LT-LiCo_{0.9}Ni_{0.1}O₂ cathode during the first charge/discharge cycling. Because the prepared sample (LT-LiCo_{0.9}Ni_{0.1}O₂) has a predominantly lithiated spinel character (see ref 16), we choose this as a model system to investigate the Li⁺ migration tendencies in the $Fd\overline{3}m$ phase of $LiCoO_2$ (or $Li_2Co_2O_4$). Figure 7a shows the simulated XRD patterns of $Fd\overline{3}m$ overlithiated LiCoO₂ spinel (i.e., Li₂Co₂O₄) and $Fd\overline{3}m$ LiCo₂O₄ spinel oxide. We observe that the simulated XRD patterns are quite similar to each other, except that the peak intensity ratio of $I_{(113)}/I_{(004)}$ can help distinguish the structural differences between the two cubic structures (i.e., lithium ions occupying 16c O_h and 8a T_d sites in Li₂Co₂O₄ and LiCo₂O₄, respectively; see Section S3 in the SI for further discussions). Figure 7b shows the electrochemical profiles for

the first cycle of Li/LT-LiCo_{0.9}Ni_{0.1}O₂ cell, where we collect the XRD patterns at various states-of-charge (see Figure 7c,d). The ratios of $I_{(113)}/I_{(004)}$ XRD peak intensities for various potentials of Li/LT-LiCo_{0.9}Ni_{0.1}O₂ cell are summarized in Table 3. From

Table 3. XRD Peak Intensity Ratio of $I_{(113)}/I_{(004)}$ at Various State of Charge of LiNi_{0.1}Co_{0.9}O₂ Cathode Materials, Mainly Composed of $Fd\overline{3}m$ Phase^{*a*,16}

state-of-charge in Figure 7b	(1)	(2)	(3)	(4)	(5)	(6)
x in $\text{Li}_{1-x}\text{MO}_2$	0	0.30	0.55	0.49	0.21	0.10
$I_{(113)}/I_{(004)}$	0.44	0.53	0.75	0.64	0.51	0.45

^aThe higher values of $I_{(113)}/I_{(004)}$ directly indicate that more lithium ions are occupying the T_d sites of $Fd\overline{3}m$ phase (i.e., $I_{(113)}/I_{(004)} = 1.1$). The lower values of $I_{(113)}/I_{(004)}$ indicate that more lithium ions are occupying the O_h sites (see Figure 7a). For further discussions, please see Section S3 in the SI.

our results, we can observe that the $I_{(113)}/I_{(004)}$ ratio is almost the same at the beginning and at the end of the charge/ discharge runs, at (1) and (6), respectively. More interestingly, the $I_{(113)}/I_{(004)}$ ratio is found to be very close to each other at (2) and (5). At point (2), the majority of lithium ions occupying the 16c O_h sites of $Fd\overline{3}m$ $Li_{2-x}Co_2O_4$ phase should already be extracted from the cathode materials. At point (5), most of the lithium ions are being inserted back to the O_h sites in the $Fd\overline{3}m$ phase. This qualitatively implies that many remaining lithium ions in the $Fd\overline{3}m$ phase are still occupying the 16c O_h sites instead of the 8a T_d sites at point (2), which contributes to an increased overpotential during the charging cycle, as discussed in Figure 5. Our DFT results in Figure 6 show that Li ions will start migrating once there is a local region of concentration that is Li-deficient. At point (3), the $I_{(113)}$ / $I_{(004)}$ ratio reaches the highest value, indicating that the Li⁺ ions in the $Fd\overline{3}m$ phase are mostly occupying the T_d sites (whereas our cathode sample contains Li⁺ ions occupying the O_h sites in the $R\overline{3}m$ phase). Once the Li/LT-LiCo_{0.9}Ni_{0.1}O₂ cell is discharged, the ratio of $I_{(113)}/I_{(004)}$ quickly drops at point (4), suggesting that some of the T_d Li ions are also moving into the O_h sites.

Combining this experimental observation with the calculated results in Figures 5 and 6, we conclude the following: (i) The barrier for Li⁺ ion migration from the O_h to T_d site during the charging cycle, i.e., when $Fd\overline{3}m$ LiCoO₂ (or Li₂Co₂O₄) is delithiated, is quite low; however, the thermodynamic driving force is not large until sufficient delithiation has occurred. (ii) Near the chemical composition of LiCo₂O₄ (i.e., normal spinel), Li⁺ ion migration from O_{h} and T_{d} is favorable in terms of both thermodynamics and kinetics, i.e., the barrier to migrate is low and the thermodynamic driving force is large. (iii) Depending on the relative fractions of lithium ions occupying the O_h vs T_d sites at intermediate compositions, a small overpotential (~0.2 V) can occur during the charging process. (iv) During the discharge, there are sufficient O_h sites available for Li⁺ ion insertion and migration (but the migration energy from T_d to O_h would be very high near the chemical composition of $LiCo_2O_4$). (v) The Li^+ ions at the T_d sites will migrate to the adjacent O_h sites as the lithiation continues and the barrier becomes low (see Figure 6a).

III.III. Exploring the Chemical Space of Li–Co–Mn– Ni–O. Overcoming the current limitations of lithium-rich cathode materials such as $xLi_2MnO_3 \cdot (1-x)LiMO_2$ (M = Ni,

Figure 8. (a) Calculated DFT formation energies of $\text{LiCo}_x M_{1-x}O_2$ (M = Mn or Ni; $0 \le x \le 1$) in both $Fd\overline{3}m$ and $R\overline{3}m$ structures. The mixing energies of (b) Mn and (c) Ni on the Co sublattice of $\text{LiCo}_x M_{1-x}O_2$.

Co, Mn) layered-layered materials⁵⁴⁻⁶⁰ by including a third component (spinel or overlithiated spinel)^{15,16,43} is being investigated as a possible means to meet the energy density requirements for the next-generation advanced lithium-ion batteries. Over the past 2 decades, the substitution of Ni and/or Mn by Co and controlling their chemical compositions has been identified as one path to improve and optimize the electrochemical performance of electrode materials. The implementation of a practical lithium-ion cell containing the layered LiNi_xCo_yMn_zO₂ (x + y + z = 1) cathode materials has been pursued for the development of durable and affordable large-scale batteries. However, there have been few studies of the structure and energetics of possible phases in the the Li-Co-Mn/Ni-O space. For example, Bhattacharya et al.⁶¹ studied the quaternary normal spinel oxides (AB_2O_4) using DFT and found that Co-Mn and Co-Ni ordering in the spinel structure is favored, resulting in stable LiCoMnO4 and LiCoNiO₄ quarternary compounds. Delithiated versions of these compounds do not show an energetic tendency for cation migration (e.g., inverse spinel formation), thus making a topotactic reaction upon delithiation possible, i.e., the crystal structure remains intact upon delithiation. Another recent experimental study⁶² has explored a number of metastable quaternary Li $(Ni_{1-\nu-z}Mn_{\nu}Co_{z})_{2}O_{4}$ normal spinel compounds by a low-temperature synthesis approach. However, none of above-mentioned studies have considered the overlithiated spinel $Fd\overline{3}m$ phases.

Here, we have examined the substitution of Mn or Ni on the Co site of both cubic $Fd\overline{3}m$ and layered $R\overline{3}m$ lithium cobalt oxide structures, i.e., $\text{Li}_{16}\text{Co}_{16-x}\text{M}_x\text{O}_{32}$ (where M = Mn or Ni; 0 $\leq x \leq 16$), sampling a wide range of compositions and exhaustively searching through all the geometric configurations at each composition (see refs 47–49 and Section S4 in the SI for further details on generating $\text{Li}_{16}\text{Co}_{16-x}\text{M}_x\text{O}_{32}$ structures, the accuracy of choosing low-energy structures from the calculated electrostatic energies in comparison to the DFT-level calculations, and their statistical validations).

Figure 8a displays the calculated ground state DFT formation energy (ΔH_f) of LiCo_x $M_{1-x}O_2$ (M = Mn or Ni; and $0 \le x \le 1$) sampled uniformly through the composition space. Here, the DFT formation energy of a generic LiMO₂ compound is defined as follows: ΔH_f (LiCo_x $M_{1-x}O_2$) = E_0 (LiCo_x $M_{1-x}O_2$) – $\mu_{Li} - x\mu_{Co} - (1 - x)\mu_M - 2\mu_O$, where E_0 (LiCo_x $M_{1-x}O_2$) is the calculated DFT total energy of LiCo_x $M_{1-x}O_2$ and μ_i (i = Li, Co, M, O) is the chemical potential of component i. As discussed in the earlier sections, the energy difference between the $Fd\overline{3}m$ and $R\overline{3}m$ structures at each composition is almost negligible. Further, the calculated ΔH_f of LiCo_x $M_{1-x}O_2$ varies almost linearly between the end-members, LiCoO₂ and LiMO₂ (M = Mn or Ni) in Figure 8a.

The mixing tendency of two cathode components, here, $LiCoO_2$ and $LiMO_2$ (M = Mn or Ni), can be obtained using $\Delta E_{\text{mix}} = E_0(\text{LiCo}_x M_{1-x} O_2) - \{x E_0(\text{LiCo} O_2) + (1 - x)\}$ $E_0(\text{LiMO}_2)$, where $\tilde{E}_0(\text{LiCo}_x M_{1-x} O_2)$, $E_0(\text{LiCo} O_2)$, and $E_0(\text{LiMO}_2)$ are the calculated DFT total energies of either $Fd\overline{3}m$ or $R\overline{3}m$ LiCo_xM_{1-x}O₂, LiCoO₂, and LiMO₂ (M = Mn or Ni), respectively. A slightly negative $\Delta E_{\rm mix}$ (i.e., -25 to 0 meV/ site) indicates a weak preference for ordering, which could be overcome by configurational entropy at elevated temperatures to form a solid solution. A significantly more negative ΔE_{mix} (i.e., <-25 meV/site) usually leads to the formation of an ordered compound. In contrast, a slightly positive ΔE_{mix} (i.e., 0-25 meV/site) hints at a weak preference for phase separation; again, configurational entropy could favor solid solutions at elevated temperatures. Lastly, a significantly positive ΔE_{mix} (i.e., >25 meV/site) usually results in a twophase miscibility gap. From Figure 8b, it can be observed that Mn substitution in either $Fd\overline{3}m$ or $R\overline{3}m$ LiCo₂Mn₁₋₂O₂ is only favorable at dilute concentrations of Mn (x > 0.9). In fact, the mixing of Mn and Co on the Co sublattice in the LCO structure becomes increasingly unfavorable toward equiatomic compositions of Mn and Co. On the other hand, as seen in Figure 8c, the mixing of Ni and Co on the Co sublattice is generally favorable at all compositions. In fact, the energy of

Figure 9. Convex hull analysis of $Fd\overline{3}m$ and $R\overline{3}m$ LiCo_xM_{1-x}O₂ ($0 \le x \le 1$) for (a) M = Mn and (b) M = Ni, where stable (i.e., on the hull) and nearly stable (i.e., within 25 meV/atom of the hull corresponding to $k_{\rm B}T$ at room temperature) compounds are identified. Please see Figure S5 in the SI for the calculated XRD pattern and crystal structure of the "stable" LiCo_{0.1875}Ni_{0.8125}O₂ compound, predicted in panel (b).

mixing becomes increasingly negative (up to $\sim -100 \text{ meV/site}$) toward equiatomic compositions of Ni and Co, hence compositions close to $\text{LiCo}_{0.5}\text{Ni}_{0.5}\text{O}_2$ are likely to form ordered compounds.

While the calculated ΔE_{mix} can provide new insights into the mixing between the two end-members, LiCoO₂ and LiMO₂, we further investigate the thermodynamic stabilities of Li- $Co_r Mn_{1-r}O_2$ against all the other known phases in the quaternary space currently in the OQMD.^{39,40} Large thermodynamic databases such as the OQMD, which include the energies and phase stabilities of most currently known crystalline compounds in the ICSD and hypothetical compounds based on decorations of prototype structures,^{39,40,63} have been previously used to predict new battery materials.⁶⁴⁻⁶⁷ The metric of thermodynamic stability of a compound is given by its distance from the so-called convex hull of all the phases within the respective phase space. A compound is thermodynamically stable if it lies on the convex hull of its chemical space (i.e., a hull distance of 0 meV/atom). Strongly stable compounds are likely to be synthesizable, and those that are "nearly stable" (i.e., that lie close to the convex hull, with a hull distance of <~25 meV/atom, corresponding to $k_{\rm B}T$ at room temperature to account for the thermal effects) can be possibly synthesized experimentally.^{39,40,64-67} In Figure 9, we have calculated the thermodynamic phase stability of all the $LiCo_rM_{1-r}O_2$ compounds vs all the other compounds present within the Li-Co-Mn-Ni-O chemical space (the set of thermodynamically stable compounds in this pentenary space is represented as a graph in Figure S4).

Figure 9a shows that Mn substitution on the Co sublattice can lead to nearly stable compounds for both $R\overline{3}m$ and $Fd\overline{3}m$ structures for x < 0.3 and x > 0.7 in $\text{LiCo}_x \text{Mn}_{1-x} \text{O}_2$. On the other hand, in the case of $\text{LiCo}_x \text{Ni}_{1-x} \text{O}_2$, all the compositions are predicted to be stable or nearly stable (within ~10–15 meV/atom of the convex hull; see Figure 9b). Further, two compounds at compositions $\text{LiCo}_{0.5}\text{Ni}_{0.5}\text{O}_2$ (layered) and $\text{LiCo}_{0.1875}\text{Ni}_{0.8125}\text{O}_2$ (spinel-based) are found to lie on the convex hull. The former, $\text{LiCo}_{0.5}\text{Ni}_{0.5}\text{O}_2$, has already been synthesized as a layered $R\overline{3}m$ structure in the experiments.^{68,69} The latter lithiated spinel-based compound, $\text{LiCo}_{0.1875}\text{Ni}_{0.8125}\text{O}_2$ (having lattice parameters of $a = b = c = \sim 8.2$ Å and $\alpha = \beta = \lambda =$ 90° according to our DFT calculations; see Figure S5 in the SI), with a composition similar to that of the commercially available $R\overline{3}m$ LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ (NCA) layered cathode materials, is hereby proposed for further experimental investigation, in addition to the previously explored LiCo_{1-x}Ni_xO₂ ($0 \le x \le 0.5$) system.¹⁶

IV. CONCLUSIONS

We used a DFT-based theoretical approach to investigate the phase stability of lithium cobalt oxide in cubic vs layered forms, and found that two phases are extremely competitive in terms of free energy. While the $R\overline{3}m$ layered LiCoO₂ is predicted to be the ground state structure at all the temperatures, the $Fd\overline{3}m$ cubic lithiated spinel structure is predicted to be accessible at low temperatures due to the sluggish kinetics. We have carefully examined the electrochemical performance of both $Fd\overline{3}m$ and $R\overline{3}m$ LiCoO₂ cathode material and further studied the kinetics of lithium migration during the charging cycle in LT-LiCoO₂ (or $Li_2Co_2O_4$) by calculating the migration barriers and analyzing the ex situ X-ray diffractions. Lastly, we explored the Li-Co-Mn-Ni-O chemical space to search for a new LiCo_x $M_{1-x}O_2$ (M = Mn or Ni; $0 \le x \le 1$) quaternary cathode material that can be synthesized experimentally. Our analysis shows that $Fd\overline{3}m$ LiCo_{0.1875}Ni_{0.8125}O₂, with a chemical composition close to that of layered LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ (NCA), is predicted to be thermodynamically stable; many other Mn- and Ni-substituted $LiCo_r M_{1-r}O_2$ cathode materials can also be accessed experimentally (i.e., being close to the convex hull with a hull distance of $\langle \sim 25 \text{ meV/atom} \rangle$. These predicted materials may be of interest either as single cathodes or integrated within composite cathodes such as layeredlayered electrodes for advanced next-generation LIB applications.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.8b00394.

Stability of the $Fd\overline{3}m$ phase with Ni substitution, construction of LT-/HT-LCO interface and voltage calculations, XRD peak intensity of $I_{(113)}$ and $I_{(004)}$ in LT-LCO and LiCo₂O₄ spinel, structural search for new LiCo_xM_{1-x}O₂ compounds, a graph representation of the

ACS Applied Materials & Interfaces

Li–Co–Mn–Ni–O convex hull, and the predicted XRD pattern of new lithiated spinel-based $LiCo_{0.1875}Ni_{0.8125}O_2$ and its crystal structure (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: eungje.lee@anl.gov (E.L.). *E-mail: c-wolverton@northwestern.edu (C.W.).

ORCID 0

Zhenpeng Yao: 0000-0001-8286-8257 Maximilian Amsler: 0000-0001-8350-2476 Jiangang He: 0000-0001-9643-3617 Jason R. Croy: 0000-0002-5839-3666 Chris Wolverton: 0000-0003-2248-474X

Present Addresses

^{II}Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States (M.A.). [§]Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States (S.K.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

S.K. (conceived and designed project details; performed all the DFT calculations) was supported by Northwestern-Argonne Institute of Science and Engineering (NAISE) and partially supported by the 2016 ECS Edward G. Weston Summer Fellowship from the Electrochemical Society (ECS). V.I.H. (new structural search and stability analysis) was supported by National Science Foundation (NSF, DMR-1309957). Z.Y. (generated prototype structures) and C.W. (planned and supervised all the aspects of the research project) were supported as part of the Center for Electrochemical Energy Science (CEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Award No. DE-AC02-06CH11357). Z.L. (generated interfacial structures) and S.H. (phonon calculation) were supported by the Dow Chemical Company. M.A. (generated LiCoO₂ polymorphs via MHM) acknowledges support from the Novartis Universität Basel Excellence Scholarship for Life Sciences and the Swiss National Science Foundation (P300P2-158407 and P300P2-174475). J.H. (collaborated on phonon calculations and performed HSE calculations) acknowledges support via ONR STTR N00014-13-P-1056. Support from the Advanced Batteries Materials Research (BMR) Program, in particular David Howell and Tien Duong, of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, is gratefully acknowledged by J.R.C., E.L., and M.M.T. (contributed to the main idea and to the writing of this manuscript). This research was supported in part through the computational resources and staff contributions provided for the Quest high-performance computing facility at Northwestern University, which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Computational resources from the Swiss National Supercomputing Center in Lugano

(project s700), the Extreme Science and Engineering Discovery Environment (XSEDE) (which is supported by National Science Foundation grant number OCI-1053575), the Bridges system at the Pittsburgh Supercomputing Center (PSC) (which is supported by NSF award number ACI-1445606), and the National Energy Research Scientific Computing Center (DOE: DE-AC02-05CH11231) are gratefully acknowledged. All the authors contributed to the data analysis and in writing the manuscript.

REFERENCES

(1) Gummow, R. J.; Liles, D. C.; Thackeray, M. M. Spinel Versus Layered Structures for Lithium Cobalt Oxide Synthesized at 400 °C. *Mater. Res. Bull.* **1993**, 28, 235–246.

(2) Wolverton, C.; Zunger, A. Cation and Vacancy Ordering in Li_xCoO₂. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1998**, *57*, 2242–2252.

(3) Wolverton, C.; Zunger, A. Prediction of Li Intercalation and Battery Voltages in Layered vs. Cubic Li_xCoO₂. *J. Electrochem. Soc.* **1998**, 145, 2424–2431.

(4) Van der Ven, A.; Aydinol, M. K.; Ceder, G. First-Principles Evidence for Stage Ordering in Li_xCoO₂. J. Electrochem. Soc. **1998**, 145, 2149–2155.

(5) Wolverton, C.; Zunger, A. First-Principles Prediction of Vacancy Order-Disorder and Intercalation Battery Voltages in Li_xCoO₂. *Phys. Rev. Lett.* **1998**, *81*, 606.

(6) Van der Ven, A.; Aydinol, M. K.; Ceder, G.; Kresse, G.; Hafner, J. First-principles investigation of phase stability in Li_xCoO₂. *Phys. Rev. B* **1998**, *58*, 2975.

(7) Van der Ven, A.; Ceder, G. Electrochemical properties of spinel Li_xCoO₂: A first-principles investigation. *Phys. Rev. B* **1999**, *59*, 742.

(8) Wang, H.; Jang, Y.-I.; Huang, B.; Sadoway, D. R.; Chiang, Y.-M. TEM Study of Electrochemical Cycling-Induced Damage and Disorder in LiCoO₂ Cathodes for Rechargeable Lithium Batteries. *J. Electrochem. Soc.* **1999**, *146*, 473–480.

(9) Gabrisch, H.; Yazami, R.; Fultz, B. Hexagonal to cubic spinel transformation in lithiated cobalt oxide TEM Investigation. *J. Electrochem. Soc.* **2004**, *151*, A891–A897.

(10) Choi, S.; Manthiram, A. Synthesis and Electrochemical Properties of LiCo₂O₄ Spinel Cathodes. *J. Electrochem. Soc.* **2002**, 149, A162–A166.

(11) Gummow, R. J.; Thackeray, M. M.; David, W. I. F.; Hull, S. Structure and Electrochemistry of Lithium Cobalt Oxide Synthesized at 400 °C. *Mater. Res. Bull.* **1992**, *27*, 327–337.

(12) Gummow, R. J.; Thackeray, M. M. Lithium Cobalt Nickel-Oxide Cathode Materials Prepared at 400 °C for Rechargeable Lithium Batteries. *Solid State Ionics* **1992**, *53–56*, 681–687.

(13) Rossen, E.; Reimers, J. N.; Dahn, J. R. Synthesis and Electrochemistry of Spinel LT-LiCoO₂. *Solid State Ionics* **1993**, *62*, 53–60.

(14) Aykol, M.; Kim, S.; Wolverton, C. van der Waals Interactions in Layered Lithium Cobalt Oxides. *J. Phys. Chem. C* **2015**, *119*, 19053–19058.

(15) Long, B. R.; Croy, J. R.; Park, J. S.; Wen, J.; Miller, D. J.; Thackeray, M. M. Advances in Stabilizing 'Layered-Layered' $xLi_2MnO_3 \cdot (1-x)LiMO_2$ (M = Mn, Ni, Co) Electrodes with a Spinel Component. J. Electrochem. Soc. **2014**, 161, A2160–A2167.

(16) Lee, E.; Blauwkamp, J.; Castro, F. C.; Wu, J.; Dravid, V. P.; Yan, P.; Wang, C.; Kim, S.; Wolverton, C.; Benedek, R.; Dogan, F.; Park, J. S.; Croy, J. R.; Thackeray, M. M. Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for \geq 3.5 V Li-Ion Cells. *ACS Appl. Mater. Interfaces* **2016**, *8*, 27720–27729.

(17) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1993**, *47*, 558.

(18) Kresse, G.; Furthmüller, J. Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15–50.

(19) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1999**, *59*, 1758.

(20) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. *Phys. Rev. B* **1998**, *57*, 1505.

(21) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. *J. Chem. Phys.* **2003**, *118*, 8207– 8215.

(22) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: "Hybrid functionals based on a screened Coulomb potential" [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, No. 219906.

(23) Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.* **2011**, *44*, 1272–1276.

(24) Goedecker, S. Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems. *J. Chem. Phys.* **2004**, *120*, 9911–9917.

(25) Amsler, M.; Goedecker, S. Crystal structure prediction using the minima hopping method. *J. Chem. Phys.* **2010**, *133*, No. 224104.

(26) Amsler, M.; Flores-Livas, J. A.; Lehtovaara, L.; Balima, F.; Ghasemi, S. A.; Machon, D.; Pailhès, S.; Willand, A.; Caliste, D.; Botti, S.; Miguel, A. S.; Goedecker, S.; Marques, M. A. L. Crystal structure of cold compressed graphite. *Phys. Rev. Lett.* **2012**, *108*, No. 065501.

(27) Amsler, M.; Flores-Livas, J. A.; Huan, T. D.; Botti, S.; Marques, M. A. L.; Goedecker, S. Novel Structural Motifs in Low Energy Phases of LiAlH₄. *Phys. Rev. Lett.* **2012**, *108*, No. 205505.

(28) Tian, Y.; Jia, S.; Cava, R. J.; Zhong, R.; Schneeloch, J.; Gu, G.; Burch, K. S. Understanding the evolution of anomalous anharmonicity in Bi₂Te_{3-x}Se_x. *Phys. Rev. B* **201**7, *95*, No. 094104.

(29) Huan, T. D.; Amsler, M.; Tuoc, V. N.; Willand, A.; Goedecker, S. Low-energy structures of zinc borohydride $Zn(BH_4)_2$. *Phys. Rev. B* **2012**, *86*, No. 224110.

(30) Roy, S.; Goedecker, S.; Hellmann, V. Bell-Evans-Polanyi principle for molecular dynamics trajectories and its implications for global optimization. *Phys. Rev. E* **2008**, *77*, No. 056707.

(31) Sicher, M.; Mohr, S.; Goedecker, S. Efficient moves for global geometry optimization methods and their application to binary systems. *J. Chem. Phys.* **2011**, *134*, No. 044106.

(32) Togo, A.; Tanaka, I. First principles phonon calculations in materials science. *Scr. Mater.* **2015**, *108*, 1–5.

(33) Michel, K. J.; Wolverton, C. Symmetry building Monte Carlobased crystal structure prediction. *Comput. Phys. Commun.* **2014**, *185*, 1389–1393.

(34) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. *J. Chem. Phys.* **2000**, *113*, 9901–9904.

(35) Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. *J. Chem. Phys.* **2000**, *113*, 9978–9985.

(36) Hart, G. L. W.; Forcade, R. W. Algorithm for generating derivative structures. *Phys. Rev. B* 2008, 77, No. 224115.

(37) Hart, G. L. W.; Forcade, R. W. Generating derivative structures from multilattices: Algorithm and application to hcp alloys. *Phys. Rev.* B 2009, *80*, No. 014120.

(38) Hart, G. L. W.; Nelson, L. J.; Forcade, R. W. Generating derivative structures at a fixed concentration. *Comput. Mater. Sci.* 2012, 59, 101–107.

(39) Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). *JOM* **2013**, *65*, 1501–1509.

(40) Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. *npj Comput. Mater.* **2015**, *1*, No. 15010.

(41) Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical Accuracy for the van der Waals Density Functional. *J. Phys.: Condens. Matter* **2010**, 22, No. 022201. (42) Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals Density Functionals Applied to Solids. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2011**, 83, No. 195131.

(43) Kim, S.; Noh, J.-K.; Aykol, M.; Lu, Z.; Kim, H.; Choi, W.; Kim, C.; Chung, K. Y.; Wolverton, C.; Cho, B.-W. Layered-Layered-Spinel Cathode Materials Prepared by a High-Energy Ball-Milling Process for Lithium-ion Batteries. *ACS Appl. Mater. Interfaces* **2016**, *8*, 363–370.

(44) Shao-Horn, Y.; Hackney, S. A.; Kahaian, A. J.; Thackeray, M. M. Structural Stability of $LiCoO_2$ at 400 °C. J. Solid State Chem. 2002, 168, 60–68.

(45) Wolverton, C.; Ozoliņš, V. Entropically favored ordering: the metallurgy of Al₂Cu revisited. *Phys. Rev. Lett.* **2001**, 5518–5521.

(46) Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. CoO_2 , the end member of the LiCoO₂ solid solution. *J. Electrochem. Soc.* **1996**, 143, 1114–1123.

(47) Yao, Z.; Kim, S.; Aykol, M.; Li, Q.; Wu, J.; He, J.; Wolverton, C. Revealing the conversion mechanism of transition metal oxide electrodes during lithiation from first-principles. *Chem. Mater.* **2017**, *29*, 9011–9022.

(48) Li, Q.; Liu, H.; Yao, Z.; Cheng, J.; Li, T.; Li, Y.; Wolverton, C.; Wu, J.; Dravid, V. P. Electrochemistry of Selenium with Sodium and Lithium: Kinetics and Reaction Mechanism. *ACS Nano* **2016**, *10*, 8788–8795.

(49) Li, Q.; Yao, Z.; Wu, Z.; Mitra, S.; Hao, S.; Sahuc, T. S.; Li, Y.; Wolverton, C.; Dravid, V. P. Intermediate phases in sodium intercalation into MoS_2 nanosheets and their implications for sodium-ion batteries. *Nano Energy* **201**7, *38*, 342–349.

(50) Orikasa, Y.; Maeda, T.; Koyama, Y.; Murayama, H.; Fukuda, K.; Tanida, H.; Arai, H.; Matsubara, E.; Uchimoto, Y.; Ogumi, Z. Direct Observation of a Metastable Crystal Phase of Li_xFePO₄ under Electrochemical Phase Transition. *J. Am. Chem. Soc.* **2013**, *135*, 5497–5500.

(51) Shin, E. J.; Kim, S.; Noh, J.-K.; Byun, D.; Chung, K. Y.; Kim, H. S.; Cho, B.-W. A Green Recycling Process Designed for LiFePO₄ Cathode Materials for Li-ion Batteries. *J. Mater. Chem. A* 2015, *3*, 11493–11502.

(52) Choi, S.; Manthiram, A. Synthesis and Electrode Properties of Metastable $Li_2Mn_4O_{9-\delta}$ Spinel Oxides. J. Electrochem. Soc. 2000, 147, 1623–1629.

(53) Bhattacharya, J.; Wolverton, C. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes. *Phys. Chem. Chem. Phys.* **2013**, *15*, 6486–6498.

(54) Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. *Energy Environ. Sci.* **2012**, *5*, 7854–7863.

(55) Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. Li_2MnO_3 -stabilized LiMO₂ (M = Mn, Ni, Co) Electrodes for Lithium-ion Batteries. *J. Mater. Chem.* **2007**, *17*, 3112–3125.

(56) Kim, S.; Kim, C.; Noh, J.-K.; Yu, S.; Kim, S.-J.; Chang, W.; Choi, W. C.; Chung, K. Y.; Cho, B.-W. Synthesis of Layered-layered xLi_2MnO_3 ·(1-x)LiMO₂ (M = Mn, Ni, Co) Nanocomposite Electrodes Materials by Mechanochemical Process. *J. Power Sources* **2012**, 220, 422–429.

(57) Noh, J.-K.; Kim, S.; Kim, H.; Choi, W.; Chang, W.; Byun, D.; Cho, B.-W.; Chung, K. Y. Mechanochemical Synthesis of Li_2MnO_3 Shell/LiMO₂ (M = Ni, Co, Mn) Core-Structured Nanocomposites for Lithium-Ion Batteries. *Sci. Rep.* **2014**, *4*, No. 4847.

(58) Croy, J. R.; Iddir, H.; Gallagher, K.; Johnson, C. S.; Benedek, R.; Balasubramanian, M. First-charge instabilities of layered-layered lithium-ion-battery materials. *Phys. Chem. Chem. Phys.* **2015**, *17*, 24382–24391.

(59) Croy, J. R.; Balasubramanian, M.; Gallagher, K. G.; Burrell, A. K. Review of the U.S. Department of Energy's "Deep Dive" effort to understand voltage fade in Li- and Mn-rich cathodes. *Acc. Chem. Res.* **2015**, *48*, 2813–2821.

(60) Croy, J. R.; Gallagher, K. G.; Balasubramanian, M.; Chen, Z.; Ren, Y.; Kim, D.; Kang, S.-H.; Dees, D. W.; Thackeray, M. M.

ACS Applied Materials & Interfaces

Examining hysteresis in composite xLi₂MnO₃●(1-x)LiMO₂ cathode structures. J. Phys. Chem. C 2013, 117, 6525–6536.

(61) Bhattacharya, J.; Wolverton, C. Prediction of Quaternary Spinel Oxides as Li-Battery Cathodes: Cation Site Preference, Metal Mixing, Voltage and Phase Stability. *J. Electrochem. Soc.* **2014**, *161*, A1440– A1446.

(62) Kan, W. H.; Huq, A.; Manthiram, A. Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li–Ni–Mn–Co–O System. *Chem. Mater.* **2016**, *28*, 1832–1837.

(63) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. *APL Mater.* **2013**, *1*, No. 011002.

(64) Kirklin, S.; Meredig, B.; Wolverton, C. High-Throughput Computational Screening of New Li-Ion Battery Anode Materials. *Adv. Energy Mater.* **2013**, *3*, 252–262.

(65) Kim, S.; Aykol, M.; Hegde, V. I.; Lu, Z.; Kirklin, S.; Croy, J. R.; Thackeray, M. M.; Wolverton, C. Material design of high-capacity Lirich layered-oxide electrodes: Li_2MnO_3 and beyond. *Energy Environ. Sci.* **2017**, *10*, 2201–2211.

(66) Aykol, M.; Kirklin, S.; Wolverton, C. Thermodynamic Aspects of Cathode Coatings for Lithium-Ion Batteries. *Adv. Energy Mater.* **2014**, *4*, No. 1400690.

(67) Aykol, M.; Kim, S.; Hegde, V. I.; Snydacker, D.; Lu, Z.; Hao, S.; Kirklin, S.; Morgan, D.; Wolverton, C. High-throughput computational design of cathode coatings for Li-ion batteries. *Nat. Commun.* **2016**, *7*, No. 13779.

(68) Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Preparation and Characterization of $\text{LiNi}_{0.5}\text{Co}_{0.5}\text{O}_2$ and $\text{LiNi}_{0.5}\text{Co}_{0.4}\text{Al}_{0.1}\text{O}_2$ by Molten Salt Synthesis for Li Ion Batteries. *J. Phys. Chem. C* **2007**, *111*, 11712–11720.

(69) Montoro, L.; Abbate, M.; Almeida, E.; Rosolen, J. Electronic structure of the transition metal ions in $LiCo_{2}$, $LiNiO_{2}$ and $LiCo_{0.5}Ni_{0.5}O_{2}$. *Chem. Phys. Lett.* **1999**, 309, 14–18.